These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Characterization and heavy metal adsorption properties of schwertmannite synthesized by bacterial oxidation of ferrous sulfate solutions]. Author: Zhou SG, Zhou LX, Chen FX. Journal: Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Feb; 27(2):367-70. PubMed ID: 17514978. Abstract: An amorphous ferric hydroxysulfate named schwertmannite was synthesized by using bacterial oxidation of ferrous iron by resting A. ferrooxidans cells in acid ferrous sulfate solution (pH 2.5). The identification of the bacterially oxidized iron precipitate was carried out by SEM, XRD, FTIR and chemical analysis. Results showed that resting cells of A. ferrooxidans LX5 could completely oxidize ferrous ions to ferric ions in the FeSO4-H2O system after 2 days of incubation. The solution pH decreased from an initial 2.5 to 2.10, and about 15% of the ferrous iron was transformed into the red-brown precipitates. The subsequent characterization of the precipitates showed that the biotic, synthetic ferric hydroxysulfate was schwertmannite. Sorption edge measurement showed that the adsorption behavior of metal cations (e. g., Cu2+, Zn2+ and Cr3+) was pH-dependent. The adsorption increased with an increase in pH, and the maximum was found in a pH range of 6.0-7.0. For solution concentration of 50 mg x L(-1), the maximum adsorption efficiencies of Cu2+, Zn2+ and Cr3+ were 99.3%, 99.4% and 87.6%, respectively.[Abstract] [Full Text] [Related] [New Search]