These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin. Author: Takakura Y, Kuentzel SL, Raub TJ, Davies A, Baldwin SA, Borchardt RT. Journal: Biochim Biophys Acta; 1991 Nov 18; 1070(1):1-10. PubMed ID: 1751515. Abstract: The basic characteristics of hexose uptake and regulation of the glucose transporter (GLUT1) by D-glucose and insulin were studied in primary cultures of bovine brain microvessel endothelial cells (BMECs). A non-metabolizable glucose analog, 3-O-[3H]methyl-D-glucose [( 3H]3MG), was used as a model substrate, and the uptake was studied using BMECs grown in tissue culture plates. Uptake of [3H]3MG was equilibrative, temperature-dependent, and independent of sodium. The uptake also decreased gradually with culture age from 7 to 13 days. Saturation kinetics were observed for [3H]3MG uptake and the apparent Km and Vmax values were determined to be 13.2 mM and 169 nmol/mg per min, respectively. Pre-incubation with high concentrations of D-glucose and 3MG accelerated [3H]3MG uptake by BMECs by a counter-transport mechanism. D-Glucose, 2-deoxy-D-glucose, D-mannose, D-xylose, D-galactose and D-ribose showed significant competitive inhibition with [3H]3MG, whereas L-glucose, D-fructose, and sucrose did not affect [3H]3MG uptake by BMECs. [3H]3MG uptake was inhibited significantly by cytochalasin B and phloretin but not by phlorizin, 2,4-dinitrophenol, or ouabain. D-Glucose starvation of BMECs by incubation with D-glucose-free media for 24 h resulted in a significant increase (40-70%) in uptake of [3H]3MG compared with control conditions (7.3 mM D-glucose). Low D-glucose treatments (2.43 and 1.83 mM) for 7 days induced a slight but significant increase (20%) in [3H]3MG uptake, while long-term high glucose treatments (25 mM) showed no significant effect on [3H]3MG uptake irrespective of exposure time. The increase in [3H]3MG accumulation following D-glucose starvation was dependent upon starvation time (12 to 48 hr) and protein synthesis. Refeeding of D-glucose (7.3 mM) to D-glucose-starved BMECs resulted in a return of [3H]3MG uptake to control levels in 48 h. The D-glucose-starvation-induced increase in [3H]3MG uptake was shown to result from an increase in Vmax; the Km remained constant. In addition, D-glucose-starved BMECs were shown to have an increased level of GLUT1 using an antibody against human GLUT1 and an enzyme-linked immunosorbent assay (ELISA). The increased uptake following D-glucose starvation was not significantly affected by the presence of L-glucose, was partially impaired by the presence of D-galactose, D-fructose, and D-xylose, and was completely inhibited by the presence of D-mannose and 3MG. Furthermore, preincubation of BMECs with insulin (10 micrograms/ml) for 20 min did not affect the uptake of [3H]3MG or 2-deoxy-D-[3H]glucose ([3H]2DG).(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]