These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recombinant human osteogenic protein-1 upregulates proteoglycan metabolism of human anulus fibrosus and nucleus pulposus cells.
    Author: Imai Y, Miyamoto K, An HS, Thonar EJ, Andersson GB, Masuda K.
    Journal: Spine (Phila Pa 1976); 2007 May 20; 32(12):1303-9; discussion 1310. PubMed ID: 17515818.
    Abstract:
    STUDY DESIGN: In vitro assessment of the effects of recombinant human osteogenic protein-1 (rhOP-1) on the proteoglycan metabolism of human intervertebral disc cells. OBJECTIVES: To determine whether rhOP-1 is effective in stimulating the cell proliferation and proteoglycan metabolism of human intervertebral disc cells cultured in alginate beads. SUMMARY OF THE BACKGROUND DATA: OP-1 has been shown to stimulate the proteoglycan and collagen synthesis of rabbit intervertebral disc cells in vitro. In vivo, a single injection of rhOP-1 restored the disc height of a degenerated disc in the rabbit anular-puncture model. The effect of rhOP-1 on human intervertebral disc cells remains unknown. METHODS: Human nucleus pulposus and anulus fibrosus cells were isolated from the discs of 4 cadaveric spines and one surgical specimen. After preculture for 7 days, alginate beads containing nucleus pulposus and anulus fibrosus cells were cultured for 21 days in media containing 10% fetal bovine serum with 0, 100, or 200 ng/mL rhOP-1 and supplements. The synthesis and accumulation of proteoglycans and the DNA content were biochemically assessed. RESULTS: The addition of rhOP-1 to the media resulted in the prevention of a decreased cell number during culture. Treatment with rhOP-1, compared with the control condition (10% fetal bovine serum), significantly upregulated proteoglycan synthesis and accumulation in alginate beads in all cases tested. A longer exposure over 14 days to rhOP-1 resulted in a pronounced response. The retention of newly-synthesized proteoglycan was higher in the rhOP-1-treated cells than in the control. CONCLUSIONS: rhOP-1 was effective in stimulating the cell proliferation and proteoglycan metabolism of human intervertebral disc cells in vitro. The results supported the hypothesis that an in vivo injection of rhOP-1 may increase the metabolic activity of disc cells or prevent apoptosis of disc cells in a degenerated disc. However, the requirement for a long exposure to rhOP-1 for human cells may suggest the need for a prolonged supply of rhOP-1 by a drug delivery system or by repeated injections.
    [Abstract] [Full Text] [Related] [New Search]