These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extracting physiologically relevant parameters of vocal folds from high-speed video image series. Author: Tao C, Zhang Y, Jiang JJ. Journal: IEEE Trans Biomed Eng; 2007 May; 54(5):794-801. PubMed ID: 17518275. Abstract: In this paper, a new method is proposed to extract the physiologically relevant parameters of the vocal fold mathematic model including masses, spring constants and damper constants from high-speed video (HSV) image series. This method uses a genetic algorithm to optimize the model parameters until the model and the realistic vocal folds have similar dynamic behavior. Numerical experiments theoretically test the validity of the proposed parameter estimation method. Then the validated method is applied to extract the physiologically relevant parameters from the glottal area series measured by HSV in an excised larynx model. With the estimated parameters, the vocal fold model accurately describes the vibration of the observed vocal folds. Further studies show that the proposed parameter estimation method can successfully detect the increase of longitudinal tension due to the vocal fold elongation from the glottal area signal. These results imply the potential clinical application of this method in inspecting the tissue properties of vocal fold.[Abstract] [Full Text] [Related] [New Search]