These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid estimation of relative protein-ligand binding affinities using a high-throughput version of MM-PBSA. Author: Brown SP, Muchmore SW. Journal: J Chem Inf Model; 2007; 47(4):1493-503. PubMed ID: 17518461. Abstract: By employing a modified protocol of the Molecular Mechanics with Poisson-Boltzmann Surface Area (MM-PBSA) methodology we substantially decrease the required computation time for calculating relative estimates of protein-ligand binding affinities. The modified method uses a generalized Born implicit solvation model during molecular dynamics to enhance conformational sampling as well as a very efficient Poisson-Boltzmann solver and a computational design based on a distributed-computing paradigm. This construction allows for reduction of the computational cost of the calculations by roughly 2 orders of magnitude compared to the traditional formulation of MM-PBSA. With this high-throughput version of MM-PBSA we show that one can produce efficient physics-based estimates of relative binding free energies with reasonable correlation to experimental data and a total computation time that is sufficiently low such that an industrially relevant throughput can be realized given currently accessible computing resources. We demonstrate this approach by performing a comparison of different MM-PBSA implementations on a set of 18 ligands for the protein target urokinase.[Abstract] [Full Text] [Related] [New Search]