These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Predicting pneumonia and influenza mortality from morbidity data.
    Author: Denoeud L, Turbelin C, Ansart S, Valleron AJ, Flahault A, Carrat F.
    Journal: PLoS One; 2007 May 23; 2(5):e464. PubMed ID: 17520023.
    Abstract:
    BACKGROUND: Few European countries conduct reactive surveillance of influenza mortality, whereas most monitor morbidity. METHODOLOGY/PRINCIPAL FINDINGS: We developed a simple model based on Poisson seasonal regression to predict excess cases of pneumonia and influenza mortality during influenza epidemics, based on influenza morbidity data and the dominant types/subtypes of circulating viruses. Epidemics were classified in three levels of mortality burden ("high", "moderate" and "low"). The model was fitted on 14 influenza seasons and was validated on six subsequent influenza seasons. Five out of the six seasons in the validation set were correctly classified. The average absolute difference between observed and predicted mortality was 2.8 per 100,000 (18% of the average excess mortality) and Spearman's rank correlation coefficient was 0.89 (P = 0.05). CONCLUSIONS/SIGNIFICANCE: The method described here can be used to estimate the influenza mortality burden in countries where specific pneumonia and influenza mortality surveillance data are not available.
    [Abstract] [Full Text] [Related] [New Search]