These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of solution chemistry and ion valence on the adhesion kinetics of groundwater and marine bacteria. Author: Chen G, Walker SL. Journal: Langmuir; 2007 Jun 19; 23(13):7162-9. PubMed ID: 17523680. Abstract: The role of solution chemistry on bacterial adhesion has been investigated using a radial stagnation point flow (RSPF) system. This experimental system utilized an optical microscope and an image-capturing device to directly observe the deposition kinetics of a groundwater bacterium, Burkholderia cepacia G4g, and a marine bacterium, Halomonas pacifica g. Experiments were carried out under well-controlled hydrodynamic and solution chemistry conditions, allowing for the sensitivity of bacterial adhesion behavior to be examined under a range of ionic strength and valence (KCl vs CaCl2) simulating groundwater and marine environments. Complimentary cell characterization techniques were conducted to evaluate the electrophoretic mobility, hydrophobicity, surface charge density, and viability of the bacteria under the same range of conditions. Solution chemistry was found to have a marked effect on the electrokinetic and surface properties of bacteria and the quartz collector, as well as on the resulting rate of bacterial deposition. Comparable adhesion trends were observed for B. cepacia G4g and H. pacifica g. Specifically, the deposition rates of the two bacteria species in both KCl and CaCl2 solutions increased with ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which considers the combination of van der Waals and electrostatic double-layer interaction forces. However, in some cases, experimental results showed bacterial deposition behavior to deviate from DLVO predictions. On the basis of the systematic investigation of bacterial cell characteristics, it was found that Ca2+ ions play a distinct role on bacterial surface charge, hydrophobicity, and deposition behaviors. It is further suggested that bacterial adhesion is determined by the combined influence of DLVO interactions, electrosteric interactions associated with solution chemistry, and the hydrodynamics of the deposition system.[Abstract] [Full Text] [Related] [New Search]