These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein. Author: Park KS, Jung KH, Kim SH, Kim KS, Choi MR, Kim Y, Chai YG. Journal: Stem Cells; 2007 Aug; 25(8):2044-52. PubMed ID: 17525238. Abstract: Mesenchymal stem cells have the ability to renew and differentiate into various lineages of mesenchymal tissues. We used undifferentiated human mesenchymal-like stem cells from human umbilical cord vein (hUC-MSCs), a cell line which contains several mesenchymal cell markers. We characterized functional ion channels in cultured hUC-MSCs with whole-cell patch clamp and reverse transcription-polymerase chain reaction (RT-PCR). Three types of outward current were found in these cells: the Ca(2+)-activated K(+) channel (IK(Ca)), a transient outward K(+) current (I(to)), and a delayed rectifier K(+) current (IK(DR)). IK(Ca) and IK(DR) were totally suppressed by tetraethylammonium, and IK(Ca) was sensitive to a specific blocker, iberiotoxin. I(to) was inhibited by 4-aminopyridine. Another type of inward rectifier K(+) current (K(ir)) was also detected in approximately 5% of hUC-MSCs. Elevation of external potassium ion concentration increased the K(ir) current amplitude and positively shifted its reversal potential. In addition, inward Na(+) current (I(Na)) was found in these cells ( approximately 30%); the current was blocked by tetrodotoxin and verapamil. In the RT-PCR analysis, Kv1.1, Kv4.2, Kv1.4, Kir2.1, heag1, MaxiK, hNE-Na, and TWIK-1 were detected. These results suggested that multiple functional ion channel currents, IK(Ca), IK(DR), I(to), I(Na), and K(ir), are expressed in hUC-MSCs. Disclosure of potential conflicts of interest is found at the end of this article.[Abstract] [Full Text] [Related] [New Search]