These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of advanced glycation end products on renal fibrosis and oxidative stress in cultured NRK-49F cells. Author: Yan HD, Li XZ, Xie JM, Li M. Journal: Chin Med J (Engl); 2007 May 05; 120(9):787-93. PubMed ID: 17531120. Abstract: BACKGROUND: Advanced glycation end products (AGEs) play a critical role in the development of diabetic nephropathy. Reactive oxygen species (ROS) may play a critical role in AGEs induced growth factor expression. In this study, the effects of AGEs on transforming growth factor beta1 (TGF-beta1), connective tissue growth factor (CTGF) and fibronectin (Fn) mRNA expression and oxidative stress in cultured NRK-49F cells were examined. METHODS: NRK-49F cells were incubated with medium containing different doses of AGEs (50, 100 or 200 microg/ml) for 24 hours, or with AGEs 100 microg/ml for different times (0, 12, 24 or 48 hours). Cells in the serum-free medium or medium containing 25 mmol/L glucose were controls. Cells were treated with 25 mmol/L glucose and 100 microg/ml AGEs for 24 hours to determine the effects between AGEs and glucose. We clarified the role of antioxidant by pretreating cells with N-acetylcysteine (10 mmol/L), ginkgo biloba extract (50 or 100 mg/L) for 24 hours and with 100 microg/ml AGEs for further 24 hours. Alamarblue dye assay was used to analyze cell growth; intracellular ROS generation was measured by flow cytometry; intracellular glutathione by fluorescence spectrophotometry; expressions of TGF-beta1, CTGF and Fn mRNA by semiquantitative RT-PCR. RESULTS: AGEs significantly increased the expressions of TGF-beta1, CTGF, Fn mRNA and intracellular ROS generation, and decreased the glutathion level in NRK-49F cells in dose- and time-dependent manners. High glucose and AGEs together significantly increased the expression of TGF-beta1, CTGF and Fn mRNA, compared with AGEs and high glucose separately. Preincubation with N-acetylcysteine or ginkgo biloba extract increased GSH level, suppressed AGEs-induced oxidative stress and TGF-beta1, CTGF and Fn mRNA overexpression. CONCLUSIONS: AGEs can significantly increase expression of TGF-beta1, CTGF, Fn mRNA in NRK-49F cells through enhancement of oxidative stress. The accumulation of AGEs may play a pivotal role in the pathogenesis of tubulointerstitial fibrosis in diabetic nephropathy. Suppression of AGEs induced TGF-beta1, CTGF and Fn mRNA overexpression in renal fibroblasts through inhibition of oxidative stress may be a mechanism underlying effect of ginkgo biloba extract in diabetic nephropathy. In addition, antioxidant therapy may help prevent AGEs accumulation and its induced damage.[Abstract] [Full Text] [Related] [New Search]