These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of central nervous system sites involved in the water diuresis response elicited by central microinjection of nociceptin/ Orphanin FQ in conscious rats via c-Fos and inducible cAMP early repressor immunocytochemistry.
    Author: Gottlieb HB, Fleming TM, Ji L, Cunningham JT.
    Journal: J Neuroendocrinol; 2007 Jul; 19(7):531-42. PubMed ID: 17532793.
    Abstract:
    Intracerebroventricular (i.c.v.) administration of the opioid-like peptide, nociceptin/Orphanin (nociceptin), in conscious rats produces diuretic and antinatriuretic effects. The present study utilised changes in Fos and inducible cAMP early repressor (ICER) immunocytochemistry expression to examine the central nervous (CNS) sites activated or inhibited, respectively, by central administration of nociceptin. Urine samples were collected during control (15 min) and after i.c.v. vehicle (5 microl, n = 12) or nociceptin (10 microg/5 microl; n = 12). Four additional urine samples (15-min) were collected after the i.c.v. injection. The brain was processed for Fos using a commercially available antibody (Oncogene AB-5) and for ICER using a polyclonal anti-ICER antibody raised in rabbits. In vehicle-injected conscious rats, renal excretion of water or sodium was not altered. However, nociceptin produced a rapid and marked increase in urine flow (V) and a decrease in urinary sodium excretion rate. In addition, i.c.v. nociceptin produced a significant increase in Fos staining in the dorsomedial nucleus of the hypothalamus, the perinuclear zone of the supraoptic nucleus, the organum vasculosum of the lamina terminalis (OVLT), the lateral preoptic area and the lateral hypothalamic area compared to control. By contrast, Fos expression decreased in the area postrema and locus coeruleus compared to controls. Furthermore, ICER staining was significantly increased in the perinuclear zone of the supraoptic nucleus, supraoptic nucleus, median preoptic nucleus, OVLT, medial preoptic area, central nucleus of the amygdala, and medial nucleus of the solitary tract. Together, central opioid receptor-like type 1 activation in these CNS regions may participate in the neural pathways involved in the diuretic and antinatriuretic effects of nociceptin.
    [Abstract] [Full Text] [Related] [New Search]