These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reorganization of receptive fields following hearing loss in inferior colliculus neurons.
    Author: Barsz K, Wilson WW, Walton JP.
    Journal: Neuroscience; 2007 Jun 29; 147(2):532-45. PubMed ID: 17540507.
    Abstract:
    We explored frequency and intensity encoding in the inferior colliculus (IC) of the C57 mouse model of sensorineural hearing loss. Consistent with plasticity reported in the IC of other models of hearing loss, frequency response areas (FRAs) in hearing-impaired (HI) mice were broader with fewer high-frequency units than normal-hearing (NH) mice. The broad FRAs recorded from HI mice had lower cutoffs on the low frequency edge of the FRA. Characteristic frequency (CF) and sharpness of tuning (Q10) calculated from the FRA were used to divide the sample into four categories: low-CF sharp-FRA, low-CF broad-FRA, high-CF sharp-FRA, and high-CF broad-FRA units. Rate-intensity functions (RIFs) for CF tones and noise were used to determine the minimum and maximum response counts as well as the sound pressure levels resulting in 10%, 50%, and 90% of the maximum spike count. Tone RIFs of broad FRA units were shifted to the right of tone RIFs of sharp FRA units in both NH and HI mouse IC, regardless of the unit CF. The main effects of hearing loss were seen in the noise RIFs. The low-CF broad-FRA units in HI mice had elevated responses to noise, and the high-CF sharp-FRA units in HI mice had lower maximum rates, as compared with the units recorded from NH mice. These results suggest that, as the IC responds to peripheral hearing loss with changes in the representation of frequency, an altered balance between inhibitory and excitatory inputs to the neurons recorded from the HI mice alters aspects of the units' intensity encoding. This altered balance likely occurs, at least in part, outside of the IC.
    [Abstract] [Full Text] [Related] [New Search]