These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bymixer system can measure O2 uptake and CO2 elimination in the anesthesia circle circuit.
    Author: Rosenbaum A, Kirby CW, Breen PH.
    Journal: Can J Anaesth; 2007 Jun; 54(6):430-40. PubMed ID: 17541071.
    Abstract:
    BACKGROUND: The ability to measure carbon dioxide elimination (Vco(2)), oxygen uptake (Vo(2)), and R (respiratory exchange ratio, Vco(2)/Vo(2)) during anesthesia may help the non-invasive detection of critical events (e.g., abrupt decrease in cardiac output) and metabolic upset (e.g., onset of anaerobic metabolism). METHODS: We have developed a new clinical bymixer (inline mixing chamber) that can measure mixed inspired and expired gas fractions in the anesthesia circle circuit. The addition of a standard anesthesia gas analyzer and flowmeter, and a new airway temperature and humidity sensor, allow determinations of Vco(2) and Vo(2) at the airway opening of the circle circuit. Over a range of tidal volume and frequency, Vco(2) and Vo(2) were compared to reference values generated by the combustion of metered liquid ethanol in a new metabolic lung simulator. RESULTS: By linear regression, bymixer-flow measurements of Vco(2) (slope = 1.02, Y-intercept = -5.31, coefficient of determination, R(2) = 0.998) and Vo(2) (slope = 1.05, Y-intercept = -4.34, R(2) = 0.993) correlated closely to the reference values generated by the metabolic lung simulator. Limits of agreement analysis generated percent errors (mean +/- 1.96 SD) of -1.2 +/- 7.2% for Vco(2) and 2.5 +/- 9.8% for Vo(2). CONCLUSIONS: The new clinical bymixer is compact, lightweight, disposable, inexpensive, and has a fast and adjustable response time (time constant about 14 sec). Anesthesia circle circuit integrity is maintained. Bymixer-flow measurements of Vco(2) and Vo(2) are accurate and may add to clinical monitoring under anesthesia and surgery.
    [Abstract] [Full Text] [Related] [New Search]