These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reduced expression of heme oxygenase-1 in patients with coronary atherosclerosis.
    Author: Brydun A, Watari Y, Yamamoto Y, Okuhara K, Teragawa H, Kono F, Chayama K, Oshima T, Ozono R.
    Journal: Hypertens Res; 2007 Apr; 30(4):341-8. PubMed ID: 17541213.
    Abstract:
    Heme oxigenase-1 (HO-1) is known to be an inducible cytoprotective enzyme that copes with oxidative stress. However, changes in HO-1 expression and their association with human diseases have not been studied. To test the hypothesis that the capacity to upregulate HO-1 in response to oxidative stress is an intrinsic marker for susceptibility to coronary atherosclerosis, we assessed stimulation-induced change in HO-1 expression in blood cells in 110 patients who underwent coronary angiography, comparing the results with the extent of coronary atherosclerosis and (GT)(n) repeat polymorphism in the HO-1 gene promoter region, which is believed to affect the gene expression level. The extent of coronary atherosclerosis was assessed by coronary score. Mononuclear cells were incubated with 10 micromol/l hemin or vehicle for 4 h to maximally stimulate HO-1 expression, then the HO-1 expression level was determined by real-time polymerase chain reaction (PCR). The difference between the HO-1 mRNA levels of hemin- and vehicle-treated cells (DeltaHO-1 mRNA) was taken as an index of the capacity to upregulate HO-1 mRNA. The coefficient of variance of DeltaHO-1 mRNA was 7.2%. Consistent with previous studies, DeltaHO-1 mRNA was significantly lower in patients carrying a long (GT)(n) repeat. DeltaHO-1 mRNA negatively and significantly correlated with the coronary score (r(2)=0.50, p<0.01). In conclusion, the capacity to upregulate HO-1 expression may be determined, at least in part, by genetics, and reduced ability to induce HO-1 may be involved in the mechanism of coronary atherosclerosis.
    [Abstract] [Full Text] [Related] [New Search]