These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucocorticoid resistance following herpes simplex-1 infection: role of hippocampal glucocorticoid receptors.
    Author: Bener D, Wohlman A, Itzik A, Yirmiya R, Ben-Hur T, Weidenfeld J.
    Journal: Neuroendocrinology; 2007; 85(4):207-15. PubMed ID: 17541258.
    Abstract:
    Herpes simplex-1 (HSV-1) is a sporadic cause of viral encephalitis. We have previously demonstrated that corneal HSV inoculation markedly activates the hypothalamo-pituitary-adrenal (HPA) axis. This activation depends on host derived brain interleukine-1 and was resistant to pretreatment with dexamethasone (dex), possibly because immune factors such as pro-inflammatory cytokines can modify the binding capacity of glucocorticoids in the hippocampus. In the present study, we examined whether resistance of the HPA axis activation following intracerebral HSV-1 infection to dex-induced suppression is associated with modifications in hippocampal or pituitary glucocorticoids (GC) receptors or GC receptors in cultured astrocytes. Male rats were injected intracerebroventricularly with purified HSV-1 or vehicle. 48 h later, dex or vehicle was injected intraperitoneally. Rats were sacrificed 3.5 h later. ACTH and corticosterone (CS) were measured in the serum. Specific binding of 3H-dex was measured in the cytosolic fraction of the hippocampus and the pituitary. Dex failed to reduce ACTH and CS responses to HSV-1 infection. In contrast, dex significantly reduced ACTH and CS responses to acoustic neural stimuli. Infection with HSV-1 markedly reduced the hippocampal maximal specific binding of dex with no effect on the dissociation constant (Kd) values. HSV-1 had no effect on the binding of dex in the pituitary. Infection of cultured astrocytes with HSV-1 also reduced the maximal specific binding of dex, but increased the Kd value. The results suggest that HSV-1 induced GC resistance may be mediated by downregulation of GC receptors in hippocampal tissue. These results may clarify a mechanism responsible for GC resistance following immune challenges.
    [Abstract] [Full Text] [Related] [New Search]