These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reoxygenation following hypoxia activates DNA-damage checkpoint signaling pathways that suppress cell-cycle progression in cultured human lymphocytes. Author: Kim BM, Choi JY, Kim YJ, Woo HD, Chung HW. Journal: FEBS Lett; 2007 Jun 26; 581(16):3005-12. PubMed ID: 17544403. Abstract: Cellular responses to DNA damage after hypoxia and reoxygenation (H/R) were examined in human lymphocytes. Cultured lymphocytes exposed to H/R showed a lower cytokinesis block proliferation index and a higher frequency of micronuclei in comparison to control cells. Western blots showed that H/R exposure induced p53 expression; however, p21 and Bax expression did not increase, indicating that H/R did not affect p53 transactivational activity. Phosphorylation of p53 (Ser15), Chk1 (Ser345), and Chk2 (Thr68) was also observed, suggesting that H/R activates p53 through checkpoint signals. In addition, H/R exposure caused the phosphorylation and negative regulation of Cdc2 and Cdc25C, proteins that are involved in cell-cycle arrest at the G2/M checkpoint. The S-phase checkpoint, regulated by the ATM-p95/NBS1-SMC1 pathway, was also triggered in H/R-exposed lymphocytes. These results demonstrate that H/R exposure triggers checkpoint signaling and induces cell-cycle arrest in cultured human lymphocytes.[Abstract] [Full Text] [Related] [New Search]