These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings. Author: McCulloh KA, Winter K, Meinzer FC, Garcia M, Aranda J, Lachenbruch B. Journal: Tree Physiol; 2007 Sep; 27(9):1355-60. PubMed ID: 17545135. Abstract: Use of Granier-style heat dissipation sensors to measure sap flow is common in plant physiology, ecology and hydrology. There has been concern that any change to the original Granier design invalidates the empirical relationship between sap flux density and the temperature difference between the probes. Here, we compared daily water use estimates from gravimetric measurements with values from variable length heat dissipation sensors, which are a relatively new design. Values recorded during a one-week period were compared for three large pot-grown saplings of each of the tropical trees Pseudobombax septenatum (Jacq.) Dugand and Calophyllum longifolium Willd. For five of the six individuals, P values from paired t-tests comparing the two methods ranged from 0.12 to 0.43 and differences in estimates of total daily water use over the week of the experiment averaged < 3%. In one P. septenatum sapling, the sap flow sensors underestimated water use relative to the gravimetric measurements. This discrepancy could have been associated with naturally occurring gradients in temperature that reduced the difference in temperature between the probes, which would have caused the sensor method to underestimate water use. Our results indicate that substitution of variable length heat dissipation probes for probes of the original Granier design did not invalidate the empirical relationship determined by Granier between sap flux density and the temperature difference between probes.[Abstract] [Full Text] [Related] [New Search]