These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for an intramolecular charge transfer state in 12'-apo-beta-caroten-12'-al and 8'-apo-beta-caroten-8'-al: influence of solvent polarity and temperature. Author: Kopczynski M, Ehlers F, Lenzer T, Oum K. Journal: J Phys Chem A; 2007 Jun 28; 111(25):5370-81. PubMed ID: 17550237. Abstract: The ultrafast excited-state dynamics of two carbonyl-containing carotenoids, 12'-apo-beta-caroten-12'-al and 8'-apo-beta-caroten-8'-al, have been investigated by transient absorption spectroscopy in a systematic variation of solvent polarity and temperature. In most of the experiments, 12'-apo-beta-caroten-12'-al was excited at 430 nm and 8'-apo-beta-caroten-8'-al at 445 or 450 nm via the S0 --> S2 (11Ag- --> 11Bu+) transition. The excited-state dynamics were then probed at 860 nm for 12'-apo-beta-caroten-12'-al and at 890 or 900 nm for 8'-apo-beta-caroten-8'-al. The temporal evolution of all transient signals measured in this work can be characterized by an ultrafast decay of the S2 --> SN absorption at early times followed by the formation of a stimulated emission (SE) signal, which subsequently decays on a much slower time scale. We assign the SE signal to a low-lying electronic state of the apocarotenals with intramolecular charge-transfer character (ICT --> S0). This is the first time that the involvement of an ICT state has been detected in the excited-state dynamics of a carbonyl carotenoid in nonpolar solvents such as n-hexane or i-octane. The amplitude ratio of ICT-stimulated emission to S2 absorption was weaker in nonpolar solvents than in polar solvents. We interpret the results in terms of a kinetic model, where the S1 and ICT states are populated from S2 through an ultrafast excited-state branching reaction (tau2 < 120 fs). Delayed formation of a part of the stimulated emission is due to the transition S1 --> ICT (tau3 = 0.5-4.1 ps, depending on the solvent), which possibly involves a slower backward reaction ICT --> S1. Determinations of tau1 were carried out for a large set of solvents. Especially in 12'-apo-beta-caroten-12'-al, the final SE decay, assigned to the nonradiative relaxation ICT --> S0, was strongly dependent on solvent polarity, varying from tau1 = 200 ps in n-hexane to 6.6 ps in methanol. In the case of 8'-apo-beta-caroten-8'-al, corresponding values were 24.8 and 7.6 ps, respectively. This indicates an increasing stabilization of the ICT state with increasing solvent polarity, resulting in a decreasing ICT-S0 energy gap. Tuning the pump wavelength from the blue wing to the maximum of the S0 --> S2 absorption band resulted in no change of tau1 in acetone and methanol. Additional measurements in methanol after excitation in the red edge of the S0 --> S2 band (480-525 nm) also show an almost constant tau1 with only a 10% reduction at the largest probe wavelengths. The temperature dependence of the tau1 value of 12'-apo-beta-caroten-12'-al was well described by Arrhenius-type behavior. The extracted apparent activation energies for the ICT --> S0 transitions were in general small (on the order of a few times RT), which is in the range expected for a radiationless process.[Abstract] [Full Text] [Related] [New Search]