These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials.
    Author: Li L, Ma R, Ebina Y, Fukuda K, Takada K, Sasaki T.
    Journal: J Am Chem Soc; 2007 Jun 27; 129(25):8000-7. PubMed ID: 17550255.
    Abstract:
    Exfoliated oxide nanosheets such as Ti0.91O2 and Ca2Nb3O10 and layered double hydroxide (LDH) nanosheets of Mg2/3Al1/3(OH)2 were restacked into inorganic sandwich layered materials. Sequential adsorption of these oppositely charged nanosheets from their colloidal suspensions yielded multilayer ultrathin films while their simple mixing produced lamellar flocculates. Eliminating carbonate ions from the reaction system was found to be essential for successfully achieving the sandwich structures. The flocculated materials as well as the films were characterized by atomic force microscopy (AFM), UV-visible absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and chemical analysis, which all supported the formation of the ordered sandwich structures. AFM observations revealed alternate dense tiling of LDH nanosheets and oxide nanosheets onto a substrate surface. UV-visible absorption spectra exhibited progressive enhancement of optical density due to oxide nanosheets as a function of deposition cycles, providing strong evidence for regular growth of multilayer films. The combinations of Mg2/3Al1/3(OH)2/Ti0.91O2 and Mg2/3Al1/3(OH)2/Ca2Nb3O10 produced XRD Bragg peaks having multilayer spacings of 1.2 and 2.0 nm, respectively. These basal spacing values are compatible with the sum of thickness of LDH nanosheets and corresponding oxide nanosheets. TEM images of flocculated samples displayed lamellar features with two different constituent layers appearing alternately.
    [Abstract] [Full Text] [Related] [New Search]