These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Restoration of SMN function: delivery of a trans-splicing RNA re-directs SMN2 pre-mRNA splicing.
    Author: Coady TH, Shababi M, Tullis GE, Lorson CL.
    Journal: Mol Ther; 2007 Aug; 15(8):1471-8. PubMed ID: 17551501.
    Abstract:
    Spinal muscular atrophy (SMA) is caused by loss of survival motor neuron-1 (SMN1). A nearly identical copy gene called SMN2 is present in all SMA patients; however SMN2 produces low levels of functional protein due to alternative splicing. Recently a therapeutic approach has been developed referred to as trans-splicing. Conceptually, this strategy relies upon pre-messenger RNA (pre-mRNA) splicing occurring between two separate molecules: (i) the endogenous target RNA and (ii) the therapeutic RNA that provides the correct RNA sequence via a trans-splicing event. SMN trans-splicing RNAs were initially examined and expressed from a plasmid-backbone and shown to re-direct splicing from a SMN2 mini-gene as well as from endogenous transcripts. Subsequently, recombinant adeno-associated viral vectors were developed that expressed and delivered trans-splicing RNAs to SMA patient fibroblasts. In the severe SMA patient fibroblasts, SMN2 splicing was redirected via trans-splicing to produce increased levels of full-length SMN mRNA and total SMN protein levels. Finally, small nuclear ribonucleoprotein (snRNP) assembly, a critical function of SMN, was restored to SMN-deficient SMA fibroblasts following treatment with the trans-splicing vector. Together these results demonstrate that the alternatively spliced SMN2 exon 7 is a tractable target for replacement by trans-splicing.
    [Abstract] [Full Text] [Related] [New Search]