These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Numerical investigation of elastic modes of propagation in helical waveguides. Author: Treyssède F. Journal: J Acoust Soc Am; 2007 Jun; 121(6):3398-408. PubMed ID: 17552691. Abstract: Steel multi-wire cables are widely employed in civil engineering. They are usually made of a straight core and one layer of helical wires. In order to detect material degradation, nondestructive evaluation methods based on ultrasonics are one of the most promising techniques. However, their use is complicated by the lack of accurate cable models. As a first step, the goal of this paper is to propose a numerical method for the study of elastic guided waves inside a single helical wire. A finite element (FE) technique is used based on the theory of wave propagation inside periodic structures. This method avoids the tedious writing of equilibrium equations in a curvilinear coordinate system yielding translational invariance along the helix centerline. Besides, no specific programming is needed inside a conventional FE code because it can be implemented as a postprocessing step of stiffness, mass and damping matrices. The convergence and accuracy of the proposed method are assessed by comparing FE results with Pochhammer-Chree solutions for the infinite isotropic cylinder. Dispersion curves for a typical helical waveguide are then obtained. In the low-frequency range, results are validated with a helical Timoshenko beam model. Some significant differences with the cylinder are observed.[Abstract] [Full Text] [Related] [New Search]