These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features.
    Author: Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z.
    Journal: Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W339-44. PubMed ID: 17553836.
    Abstract:
    To distinguish the real pre-miRNAs from other hairpin sequences with similar stem-loops (pseudo pre-miRNAs), a hybrid feature which consists of local contiguous structure-sequence composition, minimum of free energy (MFE) of the secondary structure and P-value of randomization test is used. Besides, a novel machine-learning algorithm, random forest (RF), is introduced. The results suggest that our method predicts at 98.21% specificity and 95.09% sensitivity. When compared with the previous study, Triplet-SVM-classifier, our RF method was nearly 10% greater in total accuracy. Further analysis indicated that the improvement was due to both the combined features and the RF algorithm. The MiPred web server is available at http://www.bioinf.seu.edu.cn/miRNA/. Given a sequence, MiPred decides whether it is a pre-miRNA-like hairpin sequence or not. If the sequence is a pre-miRNA-like hairpin, the RF classifier will predict whether it is a real pre-miRNA or a pseudo one.
    [Abstract] [Full Text] [Related] [New Search]