These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Attenuation of the hypersensitive response by an ATPase associated with various cellular activities (AAA) protein through suppression of a small GTPase, ADP ribosylation factor, in tobacco plants.
    Author: Lee MH, Sano H.
    Journal: Plant J; 2007 Jul; 51(1):127-39. PubMed ID: 17559512.
    Abstract:
    ATPase associated with various cellular activities (AAA) proteins are commonly distributed among eukaryotes, and are involved in a multitude of cellular functions. NtAAA1 is one such example, being involved in pathogen response in tobacco plants. When its activity was suppressed in RNAi transgenic tobacco plants, an elevated resistance to the pathogenic bacterium Pseudomonas syringae was observed in comparison with the wild type. As AAA proteins function through interaction with specific partners, NtAAA1-interacting proteins were screened by the yeast two-hybrid assay, and one particular gene encoding a small GTPase, an ADP ribosylation factor, was identified and designated as NtARF. Its specific binding to NtAAA1 was confirmed by in vitro pull-down assay, and their interaction was predominant between active forms of NtARF and NtAAA1, each bound to GTP and ATP, respectively. Their physical interaction in vivo around the plasma membrane was shown by fluorescence resonance energy transfer assays, suggesting their role in membrane trafficking. Transgenic tobacco plants constitutively expressing NtARF under the control of a cauliflower mosaic virus 35S promoter exhibited spontaneous and wound-induced lesion formation, and enhanced resistance to pathogen attack. Expression of NtAAA1 in leaves of NtARF transgenic plants attenuated lesion and suppressed pathogen resistance. In wild-type tobacco plants, transcripts of NtAAA1 and NtARF could be induced by ethylene and salicylic acid, respectively. These results suggest that NtAAA1 balances plant resistance through suppression of NtARF, and that the molecular basis for the known antagonistic actions of ethylene and salicylic acid in defense response could be partly attributable to these two proteins.
    [Abstract] [Full Text] [Related] [New Search]