These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of the 2,4,5-tri-tert-butyl-1,3-diphospholide anion by phosphinidene elimination from 2,4,6-tri-tert-butyl-1,3,5-triphosphabenzene on treatment with the amide Li[NPh(SiMe3)]. Author: Clendenning SB, Hitchcock PB, Lappert MF, Merle PG, Nixon JF, Nyulászi L. Journal: Chemistry; 2007; 13(25):7121-8. PubMed ID: 17562533. Abstract: Treatment of the lithium amide Li[NPh(SiMe3)] with 2,4,6-tri-tert-butyl-1,3,5-triphosphabenzene, P(3)C(3)tBu(3), in a 1:2 ratio afforded equimolar amounts of the lithium salt of the five-membered 2,4,5-tri-tert-butyl-1,3-diphospholide anion, LiP(2)C(3)tBu(3) (isolated as its N,N,N',N'-tetramethylethylenediamine (TMEDA) adduct), and the tricyclic compound 6-[phenyl(trimethylsilyl)amino]-3,5,7-tri-tert-butyl-1,2,4,6-tetraphosphatricyclo[3.2.0.0(2,7)]hept-3-ene. Both compounds have been structurally characterised by single-crystal X-ray diffraction studies. The mechanism of this remarkable reaction has been elucidated by theoretical methods at the B3LYP/6-311+G** level of theory. The reaction involves a hitherto unobserved aminophosphinidene, which was formed by abstraction of a phosphorus atom from triphosphabenzene. The intermediate aminophosphinidene, which is further stabilised by the solvent THF, shows, in agreement with previous theoretical predictions, enhanced stability and reacts then with a second molecule of triphosphabenzene.[Abstract] [Full Text] [Related] [New Search]