These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [The best site of transplantation of neural stem cells into brain in treatment of hypoxic-ischemic damage: experiment with newborn rats]. Author: Wang X, Yang YJ, Jia YJ, Yu XH, Zhong L, Xie M, Wang XL. Journal: Zhonghua Yi Xue Za Zhi; 2007 Mar 27; 87(12):847-50. PubMed ID: 17565872. Abstract: OBJECTIVE: To investigate the best site of transplantation of neural stem cells (NSCs) into the brain to treat hypoxic-ischemic damage (HIBD). METHODS: Forty-eight 7-day-old Spraque-Dawley rats underwent ligation of the left common carotid artery and exposure to 8% oxygen at 37 degrees C for 2 hours to establish HIBD models and then were randomly divided into 4 equal groups 3 days later: HIBD control group, HIBD + cortex transplantation group (CT group) undergoing NSC transplantation into the sensorimotor cortex, HIBD + hippocampus transplantation group (HT group) undergoing NSC transplantation into the hippocampus, and HIBD + ventricle transplantation group (VT group), undergoing NSC transplantation into the lateral ventricle. Since the rats were 40-day-old, they underwent radial maze water-seeking test and 4 sensorimotor tests. Then the brains of the rats were taken out to undergo histological examination by Nissl staining and immunohistochemistry to observer the 5-bromodeoxyuridine (BrdU) expression. RESULTS: The times the rats took to find the water in all 3 arms of the maze were arranged form short to long in the order HT group < VT group < CT group < HIBD group with significant differences between the HT, VT, and CT groups and HIBD group (All P < 0.05) and between the groups HT and VT and the group CT (both P < 0.05). The results of the 4 sensorimotor tests were arranged from the best to the worst in the order CT group > VT group > HT group > HIBD group with significant differences between the groups CT and VT and the group HIBD (both P < 0.05). Nissl staining showed that the number of normal neurons in the cortex area from more to less were arranged in the order CT group > VT group > HT group > HIBD group; and the number of normal neurons in the CAI area from more to less were arranged in the order HT group > VT group > CT group > HIBD group. CONCLUSION: Transplantation of NSC attenuates the brain damage and the cognitive and sensorimotor dysfunction after HIBD. Transplantation into the lateral ventricle is the most effective.[Abstract] [Full Text] [Related] [New Search]