These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array.
    Author: Duan B, Wu L, Yuan X, Hu Z, Li X, Zhang Y, Yao K, Wang M.
    Journal: J Biomed Mater Res A; 2007 Dec 01; 83(3):868-78. PubMed ID: 17567858.
    Abstract:
    Hybrid nanofibrous membranes of poly(lactic-co-glycolic acid) (PLGA) and chitosan with different chitosan amounts (32.3, 62.7, and 86.5%) were fabricated via a specially designed electrospinning setup consisting of two sets of separate syringe pumps and power supplies. After soaking in chloroform overnight to dissolve PLGA, the amount of chitosan in the hybrid membranes was determined. The structure, mechanical properties, water uptake, and cytocompatibilities of the nanofibrous membranes were investigated by scanning electron microscopy, tensile testing, incubation in phosphate buffer solution, and human embryo skin fibroblasts culturing. Results showed that the chitosan amount in PLGA/chitosan membranes could be well controlled by adjusting the number of syringe for electrospinning of PLGA or chitosan, respectively. Because of the introduction of chitosan, which is a naturally hydrophilic polymer, the hybrid PLGA/chitosan membranes after chitosan crosslinking exhibited good mechanical and water absorption properties. The cytocompatibility of hybrid PLGA/chitosan membranes was better than that of the electrospun PLGA membrane. The electrospun hybrid nanofibrous membranes of PLGA and chitosan appear to be promising for skin tissue engineering. The concept of using an electrospinning array to form multicomponent nanofibrous membranes will lead to the creation of novel scaffolds for tissue engineering applications.
    [Abstract] [Full Text] [Related] [New Search]