These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Seasonal dynamics of soil micronutrients in compost-amended bermudagrass turf.
    Author: Provin TL, Wright AL, Hons FM, Zuberer DA, White RH.
    Journal: Bioresour Technol; 2008 May; 99(7):2672-9. PubMed ID: 17570655.
    Abstract:
    Compost application to turfgrasses can increase plant-available nutrient concentrations in soil and improve growth, but may alter micronutrient dynamics and increase leaching and runoff losses. The objectives of this study were to investigate the influence of compost on the seasonal dynamics of plant-available Mn, Fe, Cu, and Zn in soil after a single application to bermudagrass [Cynodon dactylon (L.) Pers.] turf. Extractable Mn increased from 270 to 670 mg kg(-1) and Cu from 0.36 to 9.89 mg kg(-1) from 0 to 29 months. In contrast, extractable Fe and Zn decreased by 52% and 57% during the same time period. Seasonal trends in extractable Mn and Cu were closely related to dissolved organic C (DOC), and appeared influenced by bermudagrass growth and dormancy patterns and subsequent impacts on DOC. Losses of Mn and Cu from the soil surface occurred after high levels of precipitation during winter dormancy but not during the growing season, while Fe and Zn exhibited an opposite pattern. Thus, seasonal variation of soil micronutrients was likely related to seasonal patterns of bermudagrass growth and dormancy and their effects on DOC, and precipitation events which probably leached DOC and complexed nutrients from surface soil. Composts only influenced the magnitude of changes in micronutrient concentrations, as similar seasonal trends occurred for both compost-amended and unamended soils.
    [Abstract] [Full Text] [Related] [New Search]