These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preferred crystallographic texture of alpha-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus.
    Author: Raabe D, Al-Sawalmih A, Yi SB, Fabritius H.
    Journal: Acta Biomater; 2007 Nov; 3(6):882-95. PubMed ID: 17572163.
    Abstract:
    The crystallographic texture of the crystalline alpha-chitin matrix in the biological composite material forming the exoskeleton of the lobster Homarus americanus has been determined using synchrotron X-ray pole figure measurements and the calculation of orientation distribution functions. The study has two objectives. The first one is to elucidate crystallographic building principles via the preferred synthesis of certain orientations in crystalline organic tissue. The second one is to study whether a general global design principle exists for the exoskeleton which uses preferred textures relative to the local coordinate system throughout the lobster cuticle. The first point, hence, pursues the question of the extent to which and why alpha-chitin reveals preferred textures in the lobster cuticle. The second point addresses the question of why and whether such preferred textures (and the resulting anisotropy) exist everywhere in the exoskeleton. Concerning the first aspect, a strong preference of a fiber texture of the orthorhombic alpha-chitin is observed which is characterized by a 020 crystal axis normal to the exoskeleton surface for the chitin matrix. The second question is tackled by studying samples from different parts of the carapace. While the first aspect takes a microscopic perspective at the basic structure of the biological composite, the second point aims at building a bridge between an understanding of the microstructure and the macroscopic nature of a larger biological construction. We observe that the texture is everywhere in the carapace optimized in such a way that the same crystallographic axis of the chitin matrix is parallel to the normal to the local tangent plane of the carapace. Notable differences in the texture are observed between hard mineralized parts on the one hand and soft membranous parts on the other. The study shows that the complex hierarchical microstructure of the arthropod cuticle can be well described by surprisingly simple crystallographic textures.
    [Abstract] [Full Text] [Related] [New Search]