These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: beta-adrenoceptor agonists downregulate adiponectin, but upregulate adiponectin receptor 2 and tumor necrosis factor-alpha expression in adipocytes. Author: Fu L, Isobe K, Zeng Q, Suzukawa K, Takekoshi K, Kawakami Y. Journal: Eur J Pharmacol; 2007 Aug 13; 569(1-2):155-62. PubMed ID: 17574233. Abstract: Recently, the insulin-sensitizing adipokine adiponectin and the insulin resistance-inducing adipokine tumor necrosis factor-alpha (TNF-alpha) were reported to inhibit each other's production in adipocytes. We investigated the effects of two beta(3)-adrenoceptor agonists, 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL-316,243) and (+/-)-(R(*),R(*))-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetic acid (BRL37344), on the gene expression of adiponectin, two adiponectin receptors, and TNF-alpha in adipose tissues of C57BL/6J mice. CL-316,243 and BRL37344 downregulated adiponectin, but upregulated adiponectin receptor 2 (not receptor 1) in epididymal or/and subcutaneous white adipose tissues and in brown adipose tissue. TNF-alpha expression was upregulated only in epididymal adipose tissue. To further explore these effects, we treated differentiated 3T3-L1 adipocytes with the non-selective beta-adrenoceptor agonist isoproterenol. As a result, adiponectin receptor 2 (but not receptor 1) gene expression and TNF-alpha protein expression increased, but gene expression and secretion of adiponectin decreased. The upregulation of adiponectin receptor 2 by isoproterenol is most likely via beta(2),beta(3)-adrenoceptors, adenylyl cyclases, and protein kinase A (PKA). However, the accompanying activation of AMP-activated protein kinase (AMPK) may inhibit this upregulation. Our results suggest that upregulation of TNF-alpha and downregulation of adiponectin by beta-adrenoceptor activation may contribute to the pathogenesis of catecholamine-induced insulin resistance, and that upregulation of adiponectin receptor 2 may be a feedback result of reduced adiponectin.[Abstract] [Full Text] [Related] [New Search]