These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extreme anoxia tolerance in embryos of the annual killifish Austrofundulus limnaeus: insights from a metabolomics analysis. Author: Podrabsky JE, Lopez JP, Fan TW, Higashi R, Somero GN. Journal: J Exp Biol; 2007 Jul; 210(Pt 13):2253-66. PubMed ID: 17575031. Abstract: The annual killifish Austrofundulus limnaeus survives in ephemeral pond habitats by producing drought-tolerant diapausing embryos. These embryos probably experience oxygen deprivation as part of their normal developmental environment. We assessed the anoxia tolerance of A. limnaeus embryos across the duration of embryonic development. Embryos develop a substantial tolerance to anoxia during early development, which peaks during diapause II. This extreme tolerance of anoxia is retained during the first 4 days of post-diapause II development and is then lost. Metabolism during anoxia appears to be supported mainly by production of lactate, with alanine and succinate production contributing to a lesser degree. Anoxic embryos also accumulate large quantities of gamma-aminobutyrate (GABA), a potential protector of neural function. It appears that the suite of characters associated with normal development and entry into diapause II in this species prepares the embryos for long-term survival in anoxia even while the embryos are exposed to aerobic conditions. This is the first report of such extreme anoxia tolerance in a vertebrate embryo, and introduces a new model for the study of anoxia tolerance in vertebrates.[Abstract] [Full Text] [Related] [New Search]