These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Accurate equilibrium structures obtained from gas-phase electron diffraction data: sodium chloride.
    Author: McCaffrey PD, Mawhorter RJ, Turner AR, Brain PT, Rankin DW.
    Journal: J Phys Chem A; 2007 Jul 12; 111(27):6103-14. PubMed ID: 17579381.
    Abstract:
    A novel method has been developed to allow the accurate determination of equilibrium gas-phase structures from experimental data, thus allowing direct comparison with theory. This new method is illustrated through the example of sodium chloride vapor at 943 K. Using this approach the equilibrium structures of the monomer (NaCl) and the dimer (Na(2)Cl(2)), together with the fraction of vapor existing as dimer, have been determined by gas-phase electron diffraction supplemented with data from microwave spectroscopy and ab initio calculations. Root-mean-square amplitudes of vibration (u) and distance corrections (r(a) - r(e)) have been calculated explicitly from the ab initio potential-energy surfaces corresponding to the vibrational modes of the monomer and dimer. These u and (r(a) - r(e)) values essentially include all of the effects associated with large-amplitude modes of vibration and anharmonicity; using them we have been able to relate the ra distances from a gas-phase electron diffraction experiment directly to the re distances from ab initio calculations. Vibrational amplitudes and distance corrections are compared with those obtained by previous methods using both purely harmonic force fields and those including cubic anharmonic contributions, and the differences are discussed. The gas-phase equilibrium structural parameters are r(e)(Na-Cl)(monomer) = 236.0794(4) pm; r(e)(Na-Cl)(dimer) = 253.4(9) pm; and <(e)ClNaCl = 102.7(11) degrees. These results are found to be in good agreement with high-level ab initio calculations and are substantially more precise than those obtained in previous structural studies.
    [Abstract] [Full Text] [Related] [New Search]