These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phase behavior of salt-free catanionic surfactant aqueous solutions with fullerene C60 solubilized. Author: Li H, Hao J. Journal: J Phys Chem B; 2007 Jul 12; 111(27):7719-24. PubMed ID: 17579395. Abstract: A salt-free catanionic surfactant system, tetradecyltrimethylammonium laurate (TTAL), was constructed by mixing tetradecyltrimethylammonium hydroxide (TTAOH) and lauric acid (LA). The H+ and OH- counterions form water (TTAOH+LA-->TTAL+H2O), leaving the solution salt-free. The phase behaviors at fixing the total surfactant concentration (cTTAL) to be 33.0 and 55.0 mmol L(-1), respectively, were studied through varying the molar ratio of r=nLA/nTTAOH from 0.70 to 1.20. With an increasing value of r, one observed an L1-region, an Lalpha/L1 two-phase region with a birefringent Lalpha-phase at the top, and finally a single Lalpha-phase. The ability to solubilize a fullerene mixture of C60 and C70 of different phases in different regions was tested. The colloidal stability and phase behavior of different phases with embedded fullerenes were investigated as a function of r, cTTAL, and weight ratio of fullerene to surfactant (WF/WTTAL). The 33.0 or 55.0 mmol L(-1) zero-charged vesicle-phase at r=1.00 could solubilize a considerable amount of fullerenes without macroscopic phase separation and obvious vesicular structure breakage. However, these colloidal solutions became unstable at lower concentrations of surfactants, and a precipitate would be observed at the bottom. The micellar (L1-phase) solubilization at the TTAOH-rich side was less pronounced compared to the vesicular solubilization of the zero-charged vesicle-phase, and the solubilizing ability decreased at higher r values. In the Lalpha/L1 two-phase region, a brown or dark-brown Lalpha-phase was usually found at the top of a colorless or yellowish L1-phase, indicating that most of the fullerenes were embedded in the upper Lalpha-phase. The influence of fullerene incorporation on the property of the zero-charged TTAL vesicle-phase was also investigated, and evidence has been found that the system tended to be more fluid after fullerenes were incorporated into the hydrophobic microdomains of aggregates.[Abstract] [Full Text] [Related] [New Search]