These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Golgi apparatus in parasitic protists (review of the literature)]. Author: Sokolova IuIa, Snigirevskaia ES, Komissarchik IaIu. Journal: Tsitologiia; 2007; 49(3):163-81. PubMed ID: 17582993. Abstract: This review summarizes modem data on Golgi apparatus of parasitic protists and demonstrates how the parasitic lifestyle determines functional and structural peculiarities of secretory systems in unrelated groups of unicellular parasites, in comparison to ones of "model systems", mammalian and yeast cells. The review covers the most well-studied protists, predominantly of high medical importance, belonging to following taxons: Parabasalia (Trichomonas), Diplomonada (Giardia), Entamoebidae (Entamoeba), parasitic Alveolata of the phyllum Apicomplexa (Toxoplasma and Plasmodium), and Kinetoplastida (Trypanosoma and Leishmania). Numerous recent publications demonstrated that studies on intracellular traffic in the mentioned above parasites essentially advanced our knowledge of Golgi function, traditionally based on research of cultured mammalian and yeast cells. Morphology of Golgi organelle in eukaryotes from various taxonomic groups has been compared. Within three of total six the highest taxons of Eukatyota (Adl et al., 2005) there exist at minimum eight groups represented by species lacking Golgi dictiosomes. However, biochemical and (or) molecular (genomic) evidences indicate that the organelle with functions of Golgi was present in every studied so far lineage of eukaryotes. Loss of Golgi organelle is a secondary event, which has been proven by identification of Golgi genes in the genomes of Golgi-lacking lineages. This loss might have occurred independently several times in the course of evolution. Neither the number of stacks, nor the size of the organelle correlates with intensity of secretion, or the position of the species on the evolutionary tree (in terms of presumably early/lately diverged lineages).[Abstract] [Full Text] [Related] [New Search]