These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Annotation-based distance measures for patient subgroup discovery in clinical microarray studies.
    Author: Lottaz C, Toedling J, Spang R.
    Journal: Bioinformatics; 2007 Sep 01; 23(17):2256-64. PubMed ID: 17586546.
    Abstract:
    MOTIVATION: Clustering algorithms are widely used in the analysis of microarray data. In clinical studies, they are often applied to find groups of co-regulated genes. Clustering, however, can also stratify patients by similarity of their gene expression profiles, thereby defining novel disease entities based on molecular characteristics. Several distance-based cluster algorithms have been suggested, but little attention has been given to the distance measure between patients. Even with the Euclidean metric, including and excluding genes from the analysis leads to different distances between the same objects, and consequently different clustering results. RESULTS: We describe a new clustering algorithm, in which gene selection is used to derive biologically meaningful clusterings of samples by combining expression profiles and functional annotation data. According to gene annotations, candidate gene sets with specific functional characterizations are generated. Each set defines a different distance measure between patients, leading to different clusterings. These clusterings are filtered using a resampling-based significance measure. Significant clusterings are reported together with the underlying gene sets and their functional definition. CONCLUSIONS: Our method reports clusterings defined by biologically focused sets of genes. In annotation-driven clusterings, we have recovered clinically relevant patient subgroups through biologically plausible sets of genes as well as new subgroupings. We conjecture that our method has the potential to reveal so far unknown, clinically relevant classes of patients in an unsupervised manner. AVAILABILITY: We provide the R package adSplit as part of Bioconductor release 1.9 and on http://compdiag.molgen.mpg.de/software.
    [Abstract] [Full Text] [Related] [New Search]