These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus.
    Author: Shimizu T, Kinoshita H, Nihira T.
    Journal: Appl Environ Microbiol; 2007 Aug; 73(16):5097-103. PubMed ID: 17586673.
    Abstract:
    Citrinin, a secondary fungal metabolite of polyketide origin, is moderately nephrotoxic to vertebrates, including humans. From the red-pigment producer Monascus purpureus, a 21-kbp region flanking pksCT, which encodes citrinin polyketide synthase, was cloned. Four open reading frames (ORFs) (orf1, orf2, orf3, and orf4) in the 5'-flanking region and one ORF (orf5) in the 3'-flanking region were identified in the vicinity of pksCT. orf1 to orf5 encode a homolog of a dehydrogenase (similarity, 46%), a regulator (similarity, 38%), an oxygenase (similarity, 41%), an oxidoreductase (similarity, 26%), and a transporter (similarity, 58%), respectively. orf2 (2,006 bp with four introns) encodes a 576-amino-acid protein containing a typical Zn(II)2Cys6 DNA binding motif at the N terminus and was designated ctnA. Although reverse transcriptase PCR analysis revealed that all of these ORFs, except for orf1, were transcribed with pksCT under citrinin production conditions, the disruption of ctnA caused large decreases in the transcription of pksCT and orf5, together with reduction of citrinin production to barely detectable levels, suggesting that these two genes are under control of the ctnA product. Complementation of the ctnA disruptant with intact ctnA on an autonomously replicating plasmid restored both transcription and citrinin production, indicating that CtnA is a major activator of citrinin biosynthesis.
    [Abstract] [Full Text] [Related] [New Search]