These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of glycogen synthase kinase-3beta improves tolerance to ischemia in hypertrophied hearts.
    Author: Barillas R, Friehs I, Cao-Danh H, Martinez JF, del Nido PJ.
    Journal: Ann Thorac Surg; 2007 Jul; 84(1):126-33. PubMed ID: 17588398.
    Abstract:
    BACKGROUND: Hypertrophied myocardium is more susceptible to ischemia/reperfusion injury, in part owing to impaired insulin-mediated glucose uptake. Glycogen synthase kinase-3beta (GSK-3beta) is a key regulatory enzyme in glucose metabolism that, when activated, phosphorylates/inactivates target enzymes of the insulin signaling pathway. Glycogen synthase kinase-3beta is regulated upstream by Akt-1. We sought to determine whether GSK-3beta is activated in ischemic hypertrophied myocardium owing to impaired Akt-1 function, and whether inhibition with lithium (Li) or indirubin-3'-monoxime,5-iodo- (IMI), a specific inhibitor, improves post-ischemic myocardial recovery by improving glucose metabolism. METHODS: Pressure-overload hypertrophy was achieved by aortic banding in neonatal rabbits. At 6 weeks, isolated hypertrophied hearts underwent 30 minutes of normothermic ischemia and reperfusion with or without a GSK-3beta inhibitor (0.1 mM Li; 1 microM IMI) as cardioplegic additives. Cardiac function was measured before and after ischemia. Expression, activity of Akt-1 and GSK-3beta, and lactate were determined at end-ischemia. RESULTS: Contractile function after ischemia was better preserved in hypertrophied hearts treated with GSK-3beta inhibitors. Activity of Akt-1 was significantly impaired in hypertrophied myocardium at end-ischemia. Glycogen synthase kinase-3beta enzymatic activity at end-ischemia was increased in hypertrophied hearts and was blocked by Li or IMI concomitant with significantly increased lactate production, indicating increased glycolysis. CONCLUSIONS: Regulatory inhibition of GSK-3beta by Akt-1 in hypertrophied hearts is impaired, leading to activation during ischemia. Inhibition of GSK-3beta by Li or IMI improves tolerance to ischemia/reperfusion injury in hypertrophied myocardium. The likely protective mechanism is an increase in insulin-mediated glucose uptake, resulting in greater substrate availability for glycolysis during ischemia and early reperfusion.
    [Abstract] [Full Text] [Related] [New Search]