These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Effects of the PAF antagonist WEB 2086 on hypoxia and angiotensin II-induced pulmonary vasoconstriction in the isolated perfused rat lung]. Author: Kempfert C, Brandt R, Siewert B, Kanowski U, Oddoy A. Journal: Pneumologie; 1991 Oct; 45(10):799-803. PubMed ID: 1758848. Abstract: Using isolated blood-perfused lung preparations of rats, we tested the influence of the PAF antagonist WEB 2086 on vasoconstriction triggered by hypoxia or angiotensin II (A II). If a constant flow was pre-set, changes in the prepulmonarily measured pressure were directly related to the changes of resistance in the pulmonary flow. WEB 2086 reduced the hypoxically conditioned vasoconstriction (HPV) when using blood as perfusion medium, the effect being dependent on the dose (ED50 = 127.3 +/- 21.1 mg/l). HPV was lowered on the average by 82% if the full pharmacologic dose of 800 mg/l WEB 2086 was added to the perfusate. The A II response was weakened to a lesser degree (by 45%). If plasma was used as perfusate, the pressure increase in response to hypoxic stimulation or A II was less marked. However, the relative effect of the PAF antagonist was analogous (attenuation by 83% or 53%, respectively). In chronically hypoxic animals (3 weeks at 10% O2) the relative pressure drop in the lesser circulation after application of WEB 2086 (400 mg/l; HPV; blood as perfusate) was definitely more pronounced (p less than 0.001). The fact that WEB partly antagonises the pulmonary vasoconstriction triggered both by alveolar hypoxy and by angiotensin II, seems to indicate that in both constrictive stimuli PAF participates in the complex mediator mechanism or that WEB 2086 exercises a non-specific vasodilatory effect on the pulmonary flow.[Abstract] [Full Text] [Related] [New Search]