These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Luminal substrate "brake" on mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose. Author: Quezada-Calvillo R, Robayo-Torres CC, Ao Z, Hamaker BR, Quaroni A, Brayer GD, Sterchi EE, Baker SS, Nichols BL. Journal: J Pediatr Gastroenterol Nutr; 2007 Jul; 45(1):32-43. PubMed ID: 17592362. Abstract: BACKGROUND: Starches are the major source of dietary glucose in weaned children and adults. However, small intestine alpha-glucogenesis by starch digestion is poorly understood due to substrate structural and chemical complexity, as well as the multiplicity of participating enzymes. Our objective was dissection of luminal and mucosal alpha-glucosidase activities participating in digestion of the soluble starch product maltodextrin (MDx). PATIENTS AND METHODS: Immunoprecipitated assays were performed on biopsy specimens and isolated enterocytes with MDx substrate. RESULTS: Mucosal sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) contributed 85% of total in vitro alpha-glucogenesis. Recombinant human pancreatic alpha-amylase alone contributed <15% of in vitro alpha-glucogenesis; however, alpha-amylase strongly amplified the mucosal alpha-glucogenic activities by preprocessing of starch to short glucose oligomer substrates. At low glucose oligomer concentrations, MGAM was 10 times more active than SI, but at higher concentrations it experienced substrate inhibition whereas SI was not affected. The in vitro results indicated that MGAM activity is inhibited by alpha-amylase digested starch product "brake" and contributes only 20% of mucosal alpha-glucogenic activity. SI contributes most of the alpha-glucogenic activity at higher oligomer substrate concentrations. CONCLUSIONS: MGAM primes and SI activity sustains and constrains prandial alpha-glucogenesis from starch oligomers at approximately 5% of the uninhibited rate. This coupled mucosal mechanism may contribute to highly efficient glucogenesis from low-starch diets and play a role in meeting the high requirement for glucose during children's brain maturation. The brake could play a constraining role on rates of glucose production from higher-starch diets consumed by an older population at risk for degenerative metabolic disorders.[Abstract] [Full Text] [Related] [New Search]