These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The patella ligament insertion angle influences quadriceps usage during walking of anterior cruciate ligament deficient patients. Author: Shin CS, Chaudhari AM, Dyrby CO, Andriacchi TP. Journal: J Orthop Res; 2007 Dec; 25(12):1643-50. PubMed ID: 17593539. Abstract: Following ACL injury a reduction in the peak knee flexion moment during walking (thought to be created by a decrease of quadriceps contraction) has been described as an adaptation to reduce anterior tibial translation (ATT) relative to the femur. However, the amount of ATT caused by quadriceps contraction is influenced by the patellar ligament insertion angle (PLIA). The purpose of this study was to test the hypothesis that quadriceps usage during walking correlates to individual anatomical variations in the extensor mechanism as defined by PLIA. PLIA and gait were measured for ACL-deficient knees, using subjects' contralateral knees as controls. In ACL-deficient knees, PLIA was negatively correlated (R2 = 0.59) to peak knee flexion moment (balanced by net quadriceps moment), while no correlation was found in contralateral knees. Reduction in peak flexion moment in ACL-deficient knees compared to their contralateral knees was distinctive in subjects with large PLIA, possibly to avoid excessive ATT. These results suggest that subject-specific anatomic variability of knee extensor mechanism may account for the individual variability previously observed in adaptation to a quadriceps reduction strategy following ACL injury. The average (+/-1 SD) PLIA of ACL-deficient knees (21.1 +/- 3.4 degrees) was less than the average PLIA of contralateral knees (23.9 +/- 3.1 degrees). This altered equilibrium position of the tibiofemoral joint associated with reduced PLIA and adaptations of gait patterns following ACL injury may be associated with degenerative changes in the articular cartilage. In the future, individually tailored treatment and rehabilitation considering individuals' specific extensor anatomy may improve clinical outcomes.[Abstract] [Full Text] [Related] [New Search]