These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Generation of dynamic chemical signals with microfluidic C-DACs.
    Author: Chen L, Azizi F, Mastrangelo CH.
    Journal: Lab Chip; 2007 Jul; 7(7):850-5. PubMed ID: 17594003.
    Abstract:
    The utilization of microfluidic "lab-on-a-chip" devices in fundamental medical research, drug discovery and clinical diagnostics has rapidly increased in the past decade. Lab-on-a-chip devices process small volumes of analytes and reagents through on-chip microfluidic signal processing circuits. This paper discusses the implementation of a basic microfluidic circuit block, the concentration digital-to-analog converter (or C-DAC) which produces discretized chemical concentrations in a constant stream of solvent. The chemical concentration is controlled by a time-varying digital word; hence C-DACs are suitable for on-chip generation of arbitrary chemical signals. A 4-bit continuous-flow C-DAC was fabricated in two-level PDMS technology and tested. Several chemical waveforms (sawtooth, cosine, and ramp) were generated at flow rates of 2 microL min(-1) and frequencies of 0.6-4 mHz. The frequency cut off of this C-DAC was approximately 500 mHz.
    [Abstract] [Full Text] [Related] [New Search]