These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inositol pentakisphosphate mediates Wnt/beta-catenin signaling.
    Author: Gao Y, Wang HY.
    Journal: J Biol Chem; 2007 Sep 07; 282(36):26490-502. PubMed ID: 17595165.
    Abstract:
    Wnt3a stimulates lymphoid enhancer factor/T-cell factor protein-sensitive transcription, i.e. the canonical pathway, in mouse F9 embryonal tetratocarcinoma cells expressing rat Frizzled-1. We explored the potential roles for inositol polyphosphates as mediators of Wnt signaling in the canonical path-way. Wnt3a triggers G-protein-linked phosphatidylinositol signaling, transiently generating inositol polyphosphates, especially inositol pentakisphosphate (IP(5)) accumulation. Knock-down of Galpha(q) abolishes, whereas expression of the Q209L constitutively active mutant of Galpha(q) mimics, the effects of Wnt3a on IP(5) generation and downstream signaling. Phospholipase Cbeta-1 and Cbeta-3 mediate the G protein signal to the level of phosphatidylinositol signaling. Knock-down and inhibitor studies of the enzymes responsible for generating IP(5) reveal inositol 1,4,5-trisphosphate 3-kinase and inositol polyphosphate multikinase as key mediators in the production of IP(5). Wnt3a stimulation of the canonical pathway requires accumulation of IP(5), which acts to inhibit the activity of glycogen synthase kinase-3beta, whereas stimulating casein kinase 2. Blockade of Wnt3a stimulation of IP(5) generation blocks beta-catenin accumulation, activation of lymphoid enhancer factor/T-cell factor protein-sensitive transcription, and promotion of primitive endoderm formation in response to Wnt3a. Phosphatidylinositol signaling mediates Wnt3a action in the canonical pathway, acting to generate inositol pentakisphosphate, a key second messenger of Wnt3a.
    [Abstract] [Full Text] [Related] [New Search]