These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypophyseal angioarchitecture of common tree shrew (Tupaia glis) revealed by scanning electron microscopy study of vascular corrosion casts.
    Author: Sudwan P, Chunhabundit P, Bamroongwong S, Rattanachaikunsopon P, Somana R.
    Journal: Am J Anat; 1991 Nov; 192(3):263-73. PubMed ID: 1759689.
    Abstract:
    The vascular corrosion cast technique in conjunction with scanning electron microscopy (SEM) was used for the study of pituitary microvascularization in the common tree shrew (Tupaia glis). The pituitary vascular casts were obtained by infusion of low viscosity methyl methacrylate plastic (Batson's no.17) mixture. It was found that the blood supplies to the pituitary complex were from branches of the circle of Willis and could be divided into two groups. The first group consisted of two to four superior hypophyseal arteries (SHAs) branching off from the internal carotid artery supplying each half of the median eminence (ME), infundibular stalk (IS), and pars distalis (PD). The SHAs supplying the ME branched into internal and external capillary plexi. The internal plexus had a larger capillary size (approximately 15 microns in diameter), was deeper in position, and had denser and more complex capillary loops than those in the external plexus. The capillaries of the external plexus were approximately 10 microns in diameter. The two plexi drained into 15-20 hypophyseal portal veins (HPVs) which were located mainly along the ventral and ventrolateral surfaces of the IS before breaking up into large capillaries (approximately 18 microns in diameter) with an anteroposterior arrangement within the PD. The second group consisted of one inferior hypophyseal artery (IHA) on each side branching off from the internal carotid artery. These arteries gave off branches to pierce the dorsolateral and ventrolateral aspects of infundibular process (IP) before branching off to form a capillary network. They also gave rise to radiating capillaries to supply the pars intermedia (PI) surrounding the cortical area of the IP. The hypophyseal cleft separating the PI from the PD was clearly seen with very few blood vessels. The capillaries in both PD and IP joined to form confluent hypophyseal veins draining the blood into the cavernous sinus.
    [Abstract] [Full Text] [Related] [New Search]