These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for an interaction between the SH3 domain and the N-terminal extension of the essential light chain in class II myosins. Author: Lowey S, Saraswat LD, Liu H, Volkmann N, Hanein D. Journal: J Mol Biol; 2007 Aug 24; 371(4):902-13. PubMed ID: 17597155. Abstract: The function of the src-homology 3 (SH3) domain in class II myosins, a distinct beta-barrel structure, remains unknown. Here, we provide evidence, using electron cryomicroscopy, in conjunction with light-scattering, fluorescence and kinetic analyses, that the SH3 domain facilitates the binding of the N-terminal extension of the essential light chain isoform (ELC-1) to actin. The 41 residue extension contains four conserved lysine residues followed by a repeating sequence of seven Pro/Ala residues. It is widely believed that the highly charged region interacts with actin, while the Pro/Ala-rich sequence forms a rigid tether that bridges the approximately 9 nm distance between the myosin lever arm and the thin filament. In order to localize the N terminus of ELC in the actomyosin complex, an engineered Cys was reacted with undecagold-maleimide, and the labeled ELC was exchanged into myosin subfragment-1 (S1). Electron cryomicroscopy of S1-bound actin filaments, together with computer-based docking of the skeletal S1 crystal structure into 3D reconstructions, showed a well-defined peak for the gold cluster near the SH3 domain. Given that SH3 domains are known to bind proline-rich ligands, we suggest that the N-terminal extension of ELC interacts with actin and modulates myosin kinetics by binding to the SH3 domain during the ATPase cycle.[Abstract] [Full Text] [Related] [New Search]