These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus. Author: Hargreaves EL, Yoganarasimha D, Knierim JJ. Journal: Hippocampus; 2007; 17(9):826-41. PubMed ID: 17598156. Abstract: Anatomical and physiological evidence suggests that hippocampal place cells derive their spatial firing properties from the medial entorhinal cortex (MEC) and other parahippocampal areas that send spatial and directional input to the MEC. MEC neurons fire in a precise, geometric pattern, forming a hexagonal grid that tessellates the surface of environments. Similar to place cells and head direction cells, the orientation of grid cell firing patterns can be controlled by visual landmarks, but the cells maintain their firing patterns even in the dark. Place cells and head direction cells can also completely decouple from external landmarks in the light, but it is not known whether the MEC and parahippocampal regions exhibit similar properties or are more explicitly tied to external landmarks. We recorded neurons in the MEC, parasubiculum, and CA1 and head direction cells of the anterior thalamus as the rat's internal direction sense was pitted against a salient visual landmark by slowly rotating the rat in a covered bucket while counter-rotating the visual cue. In different sessions, spatial firing rate maps and head direction tuning curves either rotated their preferred firing locations/directions by the same amount as the bucket rotation or maintained their preferences in the external laboratory framework. In few cases, the firing preferences rotated with the cue card. When cells from different regions were recorded simultaneously, the dominant response in one area almost always matched the response of the other areas. Although dominant responses were consistent throughout the recording regions, CA1 ensembles exhibited a greater degree of response heterogeneity than other regions, which nearly all exhibited internally consistent responses. Thus, the parahippocampal and MEC input to the hippocampus can be controlled by the animal's internal direction sense (presumably reflected in the firing of head direction cells) and become completely decoupled from external sensory input, yet maintain internal coherence with each other and in general with the place cell system of the hippocampus.[Abstract] [Full Text] [Related] [New Search]