These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: PMA stimulates MUC5B gene expression through an Sp1-based mechanism in airway epithelial cells. Author: Wu DY, Wu R, Chen Y, Tarasova N, Chang MM. Journal: Am J Respir Cell Mol Biol; 2007 Nov; 37(5):589-97. PubMed ID: 17600309. Abstract: We previously showed that the MUC5B gene expression was elevated by phorbol 12-myristate 13-acetate (PMA) through an epidermal growth factor receptor-independent Ras/MEKK1/JNK and P38 signaling-based transcriptional mechanism. In the current study, we elucidated the molecular basis of this transcriptional regulation using promoter-reporter gene expression and chromatin immunoprecipitation (ChIP) assays with primary human bronchial epithelial cells that are cultured at the air-liquid interface. We have observed that PMA-induced MUC5B promoter activity is blocked by the Sp1-binding inhibitor, mithramycin A, in a dose-dependent manner. Deletion analysis with the MUC5B promoter construct demonstrated that both basal and PMA-induced promoter-reporter activities reside within the -222/-78 bp region relative to the transcriptional start site. NoShift transcriptional factor assays demonstrated that PMA stimulated Sp1 binding, but not STAT1 and c-Myc binding. Immunoprecipitation studies also verified the enhanced phosphorylation of Sp1 after PMA treatment. Site-directed mutagenesis and transfection studies demonstrated the involvement of Sp1-1 (-122/-114) and the Sp1-2 (-197/-186) cis elements in the basal and PMA-induced MUC5B promoter activity. The ChIP assay with anti-RNA polymerase II reconfirmed the PMA-induced MUC5B promoter activity by showing enhanced RNA polymerase II-DNA complex containing putative MUC5B Sp1-1, Sp1-2, or Sp1-3 sites. However, the ChIP assay using anti-Sp1 antibody demonstrated that the PMA-stimulated binding is only at Sp1-2. These results suggested an Sp1-based transcriptional mechanism with Sp1-1 as the regulator of basal MUC5B promoter activity and Sp1-2 as the regulator of PMA-induced MUC5B gene expression in the human airway epithelial cells.[Abstract] [Full Text] [Related] [New Search]