These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Learning and memory dissociation in rats with lesions to the subthalamic nucleus or to the dorsal striatum. Author: El Massioui N, Chéruel F, Faure A, Conde F. Journal: Neuroscience; 2007 Jul 29; 147(4):906-18. PubMed ID: 17600628. Abstract: The striatum and the subthalamic nucleus (STN) are the two main cortical inputs to the basal ganglia. Both structures are involved in motor and cognitive functions, particularly executive functions, known to rely mainly on fronto-basal ganglia circuits. The present work investigated the respective role of the dorsal part of the striatum (dST) and the STN by studying their involvement in learning and memory processes in two separate experiments. In a first experiment, rats with lesions to the STN or to the dST were trained in a light-tone discrimination task. When the learning criterion was reached, rats were then trained to the reversed discrimination. In a second experiment, surgery was done when the learning criterion had been reached. Three weeks after surgery, animals were then subjected to two relearning sessions and then to either a reversal learning or a working memory task. When surgery was done before learning, dysfunction of the dorsal striatum induced slight difficulties in acquisition, whereas dysfunction of the STN induced no difficulties during the initial learning but induced a more rapid inhibition of responses to the first lever press following the presentation of the tone during the reversed discrimination. In the second experiment, dST-lesioned rats showed long-term memory deficit in contrast to STN-lesioned rats which showed no difficulties during relearning but deficits in working memory. These results indicate a clear dissociation in cognitive functions in which STN and dorsal striatum are involved, suggesting that the fronto-striatal circuit and the fronto-STN circuit support, at least in part, different cognitive functions.[Abstract] [Full Text] [Related] [New Search]