These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Recessive resistance genes and the Oryza sativa-Xanthomonas oryzae pv. oryzae pathosystem. Author: Iyer-Pascuzzi AS, McCouch SR. Journal: Mol Plant Microbe Interact; 2007 Jul; 20(7):731-9. PubMed ID: 17601161. Abstract: Though recessive resistance is well-studied in viral systems, little is understood regarding the phenomenon in plant-bacterial interactions. The Oryza sativa-Xanthomonas oryzae pv. orzyae pathosystem provides an excellent opportunity to examine recessive resistance in plant-bacterial interactions, in which nine of 30 documented resistance (R) genes are recessively inherited. Infestations of X. oryzae pv. oryzae, the causal agent of bacterial blight, result in significant crop loss and damage throughout South and Southeast Asia. Two recently cloned novel recessive R genes, xa5 and xa13, have yielded insights to this system. Like their viral counterparts, these bacterial recessive R gene products do not conform to the five commonly described classes of R proteins. New findings suggest that such genes may more aptly be viewed as mutations in dominant susceptibility alleles and may also function in a gene-for-gene manner. In this review, we discuss recent accomplishments in the understanding of recessively inherited R genes in the rice-bacterial blight pathosystem and suggest a new model for the function of recessive resistance in plant-bacterial interactions.[Abstract] [Full Text] [Related] [New Search]