These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: QSAR study of heparanase inhibitors activity using artificial neural networks and Levenberg-Marquardt algorithm.
    Author: Jalali-Heravi M, Asadollahi-Baboli M, Shahbazikhah P.
    Journal: Eur J Med Chem; 2008 Mar; 43(3):548-56. PubMed ID: 17602800.
    Abstract:
    A linear and non-linear quantitative structure-activity relationship (QSAR) study is presented for modeling and predicting heparanase inhibitors' activity. A data set that consisted of 92 derivatives of 2,3-dihydro-1,3-dioxo-1H-isoindole-5-carboxylic acid, furanyl-1,3-thiazol-2-yl and benzoxazol-5-yl acetic acids is used in this study. Among a large number of descriptors, four parameters classified as physico-chemical, topological and electronic indices are chosen using stepwise multiple regression technique. The artificial neural networks (ANNs) model shows superiority over the multiple linear regressions (MLR) by accounting 87.9% of the variances of antiviral potency of the heparanase inhibitors. This paper focuses on investigating the role of weight update functions in developing ANNs. Levenberg-Marquardt (L-M) algorithm shows a better performance compared with basic back propagation (BBP) and conjugate gradient (CG) algorithms. The accuracy of 4-3-1 L-M ANN model was illustrated using leave-one-out (LOO), leave-multiple-out (LMO) cross-validations and Y-randomization. The mean effect of descriptors and sensitivity analysis show that log P is the most important parameter affecting the inhibitory behavior of the molecules.
    [Abstract] [Full Text] [Related] [New Search]