These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of the cyclooxygenase products in evoking sympathetic activation in exercise.
    Author: Cui J, McQuillan P, Momen A, Blaha C, Moradkhan R, Mascarenhas V, Hogeman C, Krishnan A, Sinoway LI.
    Journal: Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1861-8. PubMed ID: 17604332.
    Abstract:
    Animal studies suggest that prostaglandins in skeletal muscles stimulate afferents and contribute to the exercise pressor reflex. However, human data regarding a role for prostaglandins in this reflex are varied, in part because of systemic effects of pharmacological agents used to block prostaglandin synthesis. We hypothesized that local blockade of prostaglandin synthesis in exercising muscles could attenuate muscle sympathetic nerve activity (MSNA) responses to fatiguing exercise. Blood pressure (Finapres), heart rate, and MSNA (microneurography) were assessed in 12 young healthy subjects during static handgrip and postexercise muscle ischemia (PEMI) before and after local infusion of 6 mg of ketorolac tromethamine in saline via Bier block (regional intravenous anesthesia). In the second experiment (n = 10), the same amount of saline was infused via the Bier block. Ketorolac Bier block decreased the prostaglandins synthesis to approximately 33% of the baseline. After ketorolac Bier block, the increases in MSNA from the baseline during the fatiguing handgrip was significantly lower than that before the Bier block (before ketorolac: Delta502 +/- 111; post ketorolac: Delta348 +/- 62%, P = 0.016). Moreover, the increase in total MSNA during PEMI after ketorolac was significantly lower than that before the Bier block (P = 0.014). Saline Bier block had no similar effect. The observations indicate that blockade of prostaglandin synthesis attenuates MSNA responses seen during fatiguing handgrip and suggest that prostaglandins contribute to the exercise pressor reflex.
    [Abstract] [Full Text] [Related] [New Search]