These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings. Author: Bozukova D, Pagnoulle C, De Pauw-Gillet MC, Desbief S, Lazzaroni R, Ruth N, Jérôme R, Jérôme C. Journal: Biomacromolecules; 2007 Aug; 8(8):2379-87. PubMed ID: 17608449. Abstract: Cataract surgery is a routine ophthalmologic intervention resulting in replacement of the opacified natural lens by a polymeric intraocular lens (IOL). A main postoperative complication, as a result of protein adsorption and lens epithelial cell (LEC) adhesion, growth, and proliferation, is the secondary cataract, referred to as posterior capsular opacification (PCO). To avoid PCO formation, a poly(ethylene glycol) (PEG) chemical coating was created on the surface of hydrogel IOLs. Attenuated total reflectance Fourier transform infrared spectroscopy, "captive bubble" and "water droplet" contact angle measurements, and atomic force microscopy analyses proved the covalent grafting of the PEG chains on the IOL surface while keeping unchanged the optical properties of the initial material. A strong decrease of protein adsorption and cell adhesion depending on the molar mass of the grafted PEG (1100, 2000, and 5000 g/mol) was observed by performing the relevant in vitro tests with green fluorescent protein and LECs, respectively. Thus, the study provides a facile method for developing materials with nonfouling properties, particularly IOLs.[Abstract] [Full Text] [Related] [New Search]