These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro pharmacological characterization of novel isoxazolopyridone derivatives as allosteric metabotropic glutamate receptor 7 antagonists. Author: Suzuki G, Tsukamoto N, Fushiki H, Kawagishi A, Nakamura M, Kurihara H, Mitsuya M, Ohkubo M, Ohta H. Journal: J Pharmacol Exp Ther; 2007 Oct; 323(1):147-56. PubMed ID: 17609420. Abstract: Novel isoxazolopyridone derivatives that are metabotropic glutamate receptor (mGluR) 7 antagonists were discovered and pharmacologically characterized. 5-Methyl-3,6-diphenylisoxazolo[4,5-c]pyridin-4(5H)-one (MDIP) was identified by random screening, and 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP) was produced by chemical modification of MDIP. MDIP and MMPIP inhibited L-(+)-2-amino-4-phosphonobutyric acid (L-AP4)-induced intracellular Ca2+ mobilization in Chinese hamster ovary (CHO) cells coexpressing rat mGluR7 with Galpha(15) (IC50 = 20 and 26 nM). The maximal response in agonist concentration-response curves was reduced in the presence of MMPIP, and its antagonism is reversible. MMPIP did not displace [3H](2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495) bound to mGluR7. These results suggested that these isoxazolopyridone derivatives are allosteric antagonists. In CHO cells expressing rat mGluR7, MDIP and MMPIP inhibited l-AP4-induced inhibition of forskolin-stimulated cAMP accumulation (IC50 = 99 and 220 nM). In CHO cells coexpressing human mGluR7 with Galpha(15), MDIP and MMPIP also inhibited the l-AP4-induced cAMP response. The maximal degree of inhibition by MMPIP was higher than that by MDIP in a cAMP assay. MMPIP was able to antagonize an allosteric agonist, the N,N'-dibenzhydryl-ethane-1,2-diamine dihydrochloride (AMN082)-induced inhibition of cAMP accumulation. In the absence of these agonists, MMPIP caused a further increase in forskolin-stimulated cAMP levels in CHO cells expressing mGluR7, whereas a competitive antagonist, LY341495, did not. This result indicates that MMPIP has an inverse agonistic activity. The intrinsic activity of MMPIP was pertussis toxin-sensitive and mGluR7-dependent. MMPIP at concentrations of at least 1 microM had no significant effect on mGluR1, mGluR2, mGluR3, mGluR4, mGluR5, and mGluR8. MMPIP is the first allosteric mGluR7-selective antagonist that could potentially be useful as a pharmacological tool for elucidating the roles of mGluR7 on central nervous system functions.[Abstract] [Full Text] [Related] [New Search]